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Abstract Artificial Intelligence (AI) is now playing a crucial role not only in 6 

everyday life, evidenced by the booming application of Large Language 7 

Models (LLMs) such as the Generative Pretrained Transformer (GPT), but also 8 

in its potential to transform traditional industries like civil engineering. This 9 

work examines the application of novel AI tools to enable Digital Twins (DT) 10 

for engineering structures, providing a comprehensive solution for the life-11 

cycle management. A comprehensive state-of-the-art review is conducted to 12 

explore existing advancements in sensing, inspection, and simulation that are 13 

fundamental to the development of digital twins. Building on this knowledge, a 14 

framework is proposed to define DT for Engineering (DT4ENG) based on their 15 

emphasis and data flow, including forward DT, backward DT, and DT-16 

informed decision making. Following this, a case study on floating offshore 17 

wind turbine (FOWT) structures demonstrates the application of DT4ENG in a 18 

specific domain, with findings that have broader implications for the life-cycle 19 

management of engineering structures. The present study reveals that the AI 20 

effectively enables digital twins to identify potential structure issues, predict 21 

deterioration, and suggest timely maintenance interventions. This approach 22 

enhances the accuracy of structural health assessments, optimises resource 23 

allocation, and minimises downtime. By translating the capabilities of digital 24 

twins into actionable strategies, the research highlights their potential in the 25 

significant improvement of the life-cycle management of engineering 26 

infrastructure. In general, these advancements promise a new era of intelligent 27 

maintenance strategies, offering increased safety, extended service life, and 28 

cost-effectiveness. The proposed DT4ENG is set to become a standard in the 29 

traditional industry, driving a shift towards more sustainable, resilient, 30 

adaptive, and intelligent structures. 31 

 32 

Keywords Engineering Structures; Artificial Intelligence; Digital Twins for 33 

Engineering (DT4ENG); Intelligent Maintenance; Floating Offshore Wind 34 

Turbine (FOWT).  35 

 36 

1 Introduction 37 

The next-generation engineering structure is on a key turning point, with 38 

increasing demands for improved life-cycle design, construction and 39 

maintenance to ensure safety, efficiency, sustainability and resilience. The 40 

growing complexity of environments, coupling with aging infrastructure 41 

systems, underscores a shift from traditional open-loop methods to more 42 

proactive, predictive, and site-specific strategies. Advances in sensing 43 

technology, inspection methods, and simulation capabilities provide a robust 44 
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foundation of reliable data and models, which are essential for understanding 45 

the current state and predicting the future performance of civil engineering 46 

structures [1]. For instance, Sensing technologies have improved infrastructure 47 

monitoring by using tools such as fibre optics, drones, and wireless sensor 48 

networks, which continuously assess structural conditions [2]. These 49 

technologies offer online data collection on stress, strain, vibration, and 50 

environmental effects, allowing for immediate fault identification [3]. 51 

Advanced inspection techniques like ultrasonic pulse velocity and ground-52 

penetrating radar further enhance infrastructure health assessments. Contact-53 

less measurement methods, including visual inspection systems with 54 

convolutional neural networks, have significantly improved the accuracy and 55 

efficiency of structural assessments[4][5]. The rapid development in 56 

computational power and advanced simulation methods has greatly enhanced 57 

the modelling of complex civil infrastructure. Simulations powered by finite 58 

element analysis and computational fluid dynamics allow engineers to predict 59 

structural behaviour under various conditions [6]. Structural control, 60 

particularly in vibration control, has advanced through vibration-based energy 61 

harvesting, providing benefits in energy efficiency and structural stability [7].  62 

More important, the growth of artificial intelligence (AI) has enabled new 63 

possibilities for Digital Twins for Engineering (DT4ENG). Digital twins [8] 64 

are dynamic, virtual replicas of physical assets, providing real-time views of 65 

their state and performance [9]. By integrating predictive analytics, continuous 66 

monitoring, and regular inspections, DT4ENG supports a more informed and 67 

adaptive maintenance approach [10]. Within the core of the DT4ENG lies the 68 

Artificial Intelligence (AI) algorithm, e.g. machine learning, deep learning, 69 

reinforcement learning, etc., which analyse data from sensors and inspections 70 

to detect patterns, predict failures, and plan maintenance actions [11]. To this 71 

end, DT4ENG represents a significant advancement for civil engineering 72 

maintenance. These systems enhance the precision and timeliness of 73 

maintenance interventions, extend asset service life, optimise resource use, and 74 

reduce the eco-impact of maintenance actions [12]. Additionally, DT4ENG 75 

serves as a tool for training and decision support, allowing engineers to explore 76 

scenarios, assess strategy impacts, and make well-informed decisions with up-77 

to-date information and sufficient what-if simulations [13]. Specifically, ageing 78 

infrastructure is particularly vulnerable to deterioration, which can compromise 79 

structural integrity and safety [14]. Various efforts have highlighted the 80 

importance of predictive maintenance strategies in extending the lifespan of 81 

such structures. Especially, factors like corrosion-fatigue and dynamic loads 82 

contribute significantly to the degradation of structural components, 83 

emphasising the need for advanced diagnostic and predictive tools to manage 84 

these issues effectively [15][16]. 85 

Figure 1 shows a framework for the DT4ENG in case of wind turbines, 86 

integrating multiple facets of wind energy systems. The resource and loads 87 

module illustrate how AI interprets environmental data and load effects, 88 

essential for optimising energy output and structural integrity. The 89 
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infrastructure resilience module highlights the role of AI in proactive 90 

maintenance demands and life-cycle management, ensuring serviceability, 91 

durability and safety. The social acceptance module emphasises the AI in 92 

integrating turbines within social concerns, addressing public perception and 93 

eco-impacts. Central to the framework is the relationship between the physical 94 

turbine and its digital counterpart, facilitated by AI, which enhances 95 

operational efficiency and resilience. 96 

 97 

 98 
Figure 1 A typical framework of DT4ENG in wind turbines. 99 

 100 

As discussed above, the future engineering structure, especially the wind 101 

turbine structure, demands an enhanced, data-model integrated approach to 102 

life-cycle management, driven by advancements in sensing, inspection, and 103 

simulation technologies. The application of DT4ENG signifies a pivotal shift 104 

that has the potential to revolutionise the management of infrastructure assets. 105 

This work explores the role and potential of AI-enhanced DT4ENG in 106 

improving the maintenance of civil engineering structures. It begins by 107 

detailing digital twins from three perspectives: forward DT, backward DT, and 108 

DT-informed decision making. Following this, a case study on forward DT in 109 

floating offshore wind turbine structures is presented, providing a snapshot of 110 

state-of-the-art applications and their benefits. Finally, the work concludes with 111 

insights into future directions and the broader implications of this 112 

transformative technology. 113 

 114 

2 General Perspectives of DT4ENG 115 

2.1 Forward Digital Twins 116 

Forward DT represents a cutting-edge approach in engineering maintenance, 117 

combining real-time data acquisition with advanced simulations and predictive 118 

analytics. This novel method enhances structural serviceability, sustainability 119 

and resilience by providing a continuous, comprehensive view of a structural 120 
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current condition and future performance. The detailed depiction of forward 121 

digital twins, as shown in Figure 2, outlines a comprehensive process 122 

beginning with the real-time data acquisition directly from structures and 123 

advancing towards an improved assessment of structural health state. This 124 

framework exemplifies the integration of multiple advanced methodologies, 125 

from site-condition monitoring that continuously tracks external conditions 126 

affecting the structure to sophisticated data analysis techniques that interpret 127 

complex datasets. The process starts with the collection of site-condition data, 128 

including wind and wave measurements, using technologies like LiDAR (Light 129 

Detection and Ranging) and other sensors. These monitoring data is fed into 130 

multi-physics simulation tools, which simulate interactions between various 131 

components of the wind turbine under environmental excitations. The results 132 

from the above simulations are processed with load transfer from the structure 133 

to component, and then to the detail, by analysing stress ranges and 134 

distributions. Following the load analysis, a deterioration model is applied to 135 

predict structural deterioration over time, considering factors such as material 136 

roughness, critical crack size, growth rates, and failure criteria. This model 137 

integrates multiple disciplines like electrochemistry, damage mechanics, and 138 

fracture mechanics. Finally, probabilistic models predict the growth of damage 139 

over time, simulating the growth of cracks and assessing the likelihood of 140 

different failure modes, accounting for uncertainties in material properties, 141 

environmental conditions, and operational loads. 142 

 143 

 144 
Figure 2 Forward digital twins from condition perception to state assessment. 145 

 146 

In general, forward DT of engineering structures signifies a rudimentary shift 147 

in structural condition assessment by introducing a proactive model that 148 

combines site-specific real-time monitoring, numerical simulations and 149 

prediction models [17]. Utilising state-of-the-art sensing technologies, these 150 

systems continuously collect data on structural behaviour and site-conditions, 151 

which is processed by using advanced simulation models and algorithms to 152 
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predict responses to various excitation and envisage possible deterioration 153 

modes [18]. The core of forward DT lies in its ability to simulate future states 154 

based on current conditions, employing algorithms like computational 155 

mechanics, material science, and electrochemistry to evaluate structural 156 

behaviour, anticipate degradation, and predict service life [19]. Through the 157 

further integration of AI algorithms, these systems enhance predictive 158 

capabilities over time by learning from historical data, thus improving 159 

prediction efficiency [20]. This active learning manner not only increases the 160 

reliability of condition assessments but also enhances the adaptability of DT to 161 

the changing environment. 162 

 163 

2.2 Backward Digital Twins 164 

 165 

In contrast to the prediction-focused forward DT, backward DT perform a 166 

prognostic function for structures. These DTs are crucial for synthesising 167 

prediction and inspection results, thereby providing a comprehensive 168 

understanding of structural conditions. The backward DT is founded on the 169 

convergence of prediction models, inspection result and monitoring data. 170 

Besides integrating prediction models and monitoring data, it typically includes 171 

historical data from periodic and non-regular inspections [21]. Unlike forward 172 

digital twins, which primarily predicts future states, backward digital twins 173 

initially focus on diagnostic analysis, which then informs and supports updated 174 

predictions. As illustrated in Figure 3, the backward DT for wind turbine 175 

structures begins with model-data integration, where observed structural 176 

conditions are aligned with their digital replica. This process involves 177 

continuous monitoring and periodic inspections. Advanced algorithms, such as 178 

Physics-Informed Neural Networks (PINNs) [22] and Dynamic Bayesian 179 

Networks (DBNs) [23], can be employed to analyse the relationships between 180 

state, response, and measurement, updating the a priori model into an a 181 

posteriori counterpart. Accordingly, this model-data integrated approach 182 

provides an updated understanding of structural behaviours and integrity by 183 

identifying differences between model predictions and exact observations 184 

and/or measurements. 185 

 186 

 187 
Figure 3 Backward DT to integrate model prediction, inspection results and 188 

monitoring data. 189 
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 190 

 191 

As discussed above, the backward DT is particularly effective in identifying 192 

patterns and damages that might not be immediately visible through 193 

conventional monitoring techniques. These analyses can uncover 194 

inconsistencies between expected and actual structural responses and 195 

observations under various environmental conditions. Such results are crucial 196 

as they prompt a re-examination of the predictive models and may lead to 197 

necessary adjustments in the DT to mirror the structural state and behaviour 198 

accurately. Additionally, by integrating inspection data, backward DT expands 199 

the database. Inspections can reveal early signs of damages that sensors may 200 

have missed, requiring updates to the DT to account for these findings. 201 

Therefore, backward DT acts as a dynamic feedback system, continually 202 

enhancing the accuracy of the structural model. 203 

 204 

2.3 Digital Twins-Informed Decision Making 205 

In general, the forward and backward DT provide in-depth insights into the 206 

current condition and anticipated evolution of engineering structures. These 207 

insights enable informed decision-making to optimise maintenance policies 208 

[24]. The essence of this type of optimisation lies in striking a balance between 209 

risk mitigation and cost reduction, achieved by the intelligent interpretation of 210 

insights derived from both model and data. Figure 4 illustrates the core engine 211 

of this process, including a dynamic POMDP (Partially Observable Markovic 212 

Decision Process, shown in Figure 4a), and reinforcement learning with muti-213 

agent (shown in Figure 4b) to support the solution of the dynamic POMDP. 214 

The dynamic POMDP begins with an initial state of the structure, followed by 215 

an action, such as a maintenance intervention or operational adjustment, which 216 

then transits the structure to a new state. The outcome of this intervention, 217 

whether beneficial or detrimental, serves as a reward or penalty within a 218 

reinforcement learning framework, guiding the selection of subsequent actions. 219 

The reinforcement learning framework [25] involves a Global A3C network 220 

that replicates its parameters to multiple worker agents. Each worker interacts 221 

with the environment, taking actions and receiving states and rewards. These 222 

interactions are recorded in a training set, which is used to update the global 223 

network, reducing the effects of high uncertainty. 224 

In this context, the decision-making is not only about selecting the right action 225 

but also determining the optimal timing (When), identifying the most critical 226 

maintenance needs (What), and selecting the most effective intervention 227 

methods (How) [26]. The DT projects the future condition of the structure 228 

based on its current state and simulate various scenarios to predict the 229 

outcomes of different actions. The optimisation planning component leverages 230 

the intelligence of DT. By utilising insights from both forward and backward 231 

DT, owners can develop maintenance schedules, allocate resources effectively, 232 

and prepare for future challenges. Scenario simulations allow exploration of 233 
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different decision outcomes, identifying the most cost-effective strategies while 234 

maintaining a low risk of structural failure. 235 

 236 
(a) Dynamic POMDP. 237 

 238 
(b) Reinforcement learning with muti-agent. 239 

Figure 4 Engine for DT-informed decision making: (a) Dynamic POMDP; (b) 240 

Reinforcement learning with muti-agent. 241 

 242 

In general, the above DT-informed decision-making combines data, 243 

predictions, and historical experiences to provide a strategic approach to 244 

maintenance. This method represents a sophisticated approach to managing 245 

structures, ensuring that every action is evidence-based, every strategy is risk-246 

averse, and every decision aims to extend the lifespan while ensuring safety 247 

and functionality. This shift towards a more informed, proactive, and data-248 

centric maintenance strategy is transformative in the infrastructure 249 

management, leading to enhanced longevity, resilience, and performance. 250 

 251 
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3 Digital Twins-boosted deterioration prognosis of floating offshore 252 

wind turbine structures: a case study 253 

To illustrate the practical application and benefits of DT4ENG, a detailed case 254 

study is presented in this section, focusing on the corrosion-fatigue (CF) 255 

deterioration of high-strength bolts in the ring-flange connections of floating 256 

offshore wind turbines (FOWTs) on modular energy islands (MEIs) [27]. The 257 

MEI is designed to harness the abundant natural resources found in ocean 258 

depths, such as wind, tidal, and solar energy. However, this pioneering 259 

approach presents unique engineering challenges, including the increased 260 

susceptibility of high-strength bolts in the ring-flange connections of wind 261 

turbine towers to corrosion-fatigue (CF) deterioration [28]. According, the case 262 

study has been carried out to elucidate the CF deterioration mechanisms 263 

affecting bolts in floating offshore wind turbines (FOWTs) on MEIs by 264 

integrating material testing data, site-specific environmental conditions, a 265 

probabilistic CF (PCF) model, and advanced multi-physics simulations. 266 

The research incorporates wind-wave data from the Gulf of Mexico [29] into 267 

the multi-physics simulation tool OpenFAST [30]. As illustrated in Figure 5, 268 

this data is processed through the PCF model to predict the structural 269 

deterioration evolution. The assessment highlights the stochastic nature of CF, 270 

leveraging material test data and site-specific conditions to improve analysis 271 

accuracy.  272 

 273 

 274 
Figure 5 Probabilistic deterioration assessment of FOWTs by forward DT. 275 

 276 

Figure 6 depicts the progression of fatigue crack growth in the most critical 277 

bolts at the bottom flange. The analysis identifies Mode-3 failure, related to the 278 

first engaged threads, as a major vulnerability, constituting 74.7% of the failure 279 

probability. Modes 1 and 2 account for 20.3% and 5.0% of the failure risk, 280 

respectively, indicating their significant impact on bolt integrity. This also 281 

indicates a higher incidence of fatigue crack initiation and propagation in the 282 

first engaged threads compared to other modes. Over time, the distribution of 283 

crack depth is shifting rightward to a critical threshold of 46.8 mm as service 284 

time progresses. This threshold represents a point of concern where the 285 



 

Manuskriptvorlage - Seite 9 / 13 

probability of bolt failure sharply increases. Meanwhile, the density plots for 286 

different time intervals reveal that crack depth tends to stabilise and 287 

concentrate around the critical size, especially as the service life nears 20 years. 288 

These findings underscore the necessity for online monitoring and proactive 289 

maintenance strategies, particularly focusing on the first engaged threads of the 290 

bolts, to prevent fatigue cracks from reaching the critical threshold.  291 

 292 
Figure 6 Crack growth and failure modes of the most critical bolt in ring-293 

flange connections. 294 

 295 

4 Conclusion 296 

 297 

Based on the above efforts and discussions, several major findings can be 298 

drawn.  299 

 The AI boosts Digital Twins for Engineering (DT4ENG), which 300 

emerges as a transformative solution for life-cycle management of 301 

engineering structures. This provides a proactive and predictive 302 

approach that is crucial for addressing the challenges posed by aging 303 

infrastructure exposed to complex service conditions. 304 

 Advances in sensing technologies, inspection methods, and simulation 305 

capabilities have established a robust and reliable framework. This 306 

framework is essential for understanding, predicting, and managing the 307 

performance of engineering structures through DT4ENG. 308 

 A case study on the modular energy island (MEI) concept demonstrates 309 

the effectiveness of DT4ENG in predicting corrosion-fatigue (CF) 310 

deterioration in floating offshore wind turbines. The study highlights 311 

the importance of integrating predictive models, material data, and 312 

monitored site-specific conditions into probabilistic simulations. 313 

 The insights gained from this work advocate for an integrated 314 

prediction-monitoring-inspection framework. This approach supports a 315 

proactive maintenance methodology that prioritises high-risk failure 316 

modes, ensuring the structural integrity, functionality, and durability. 317 

 318 

While the integration of DT4ENG shows great promise, there are still 319 

challenges to overcome, including the high initial setup costs, the need for 320 

continuous data acquisition and processing, and the complexity of integrating 321 

various data sources and models. Future efforts are highly suggested on 322 

developing more cost-effective solutions for deploying DTs, enhancing the 323 
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interoperability of different systems and data formats, and advancing machine 324 

learning algorithms to improve accuracy and efficiency. Additionally, 325 

integrating the DT with emerging technologies such as the Metaverse, mixed 326 

reality, and smart robots are also highly motivated to enhance real-time 327 

monitoring, immersive visualisation, and automated management. 328 

 329 
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Figure 1 A typical framework of AI-boosted DT4ENG in wind turbines. 457 
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Figure 2 Forward digital twins from condition perception to state assessment. 459 

 460 

Figure 3 Backward DT to integrate model prediction, inspection results and 461 

monitoring data. 462 

 463 

Figure 4 Engine for DT-informed decision making: (a) Dynamic POMDP; (b) 464 

Reinforcement learning with muti-agent. 465 

 466 

Figure 5 Probabilistic deterioration assessment of FOWTs by forward DT. 467 

 468 

Figure 6 Crack growth and failure modes of the most critical bolt in ring-flange 469 

connections. 470 


